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A Metrological Perspective

Context:
e National Quantum Initiative Act calls for apps of quantum computing [NQIA]
e Google reported an experiment achieving quantum supremacy |Gool9]

e Aaronson proposed an application related to certifiable randomness [Aar19]

Goals:
e Perform a statistical analysis, to determine preliminary lower /upper bounds
e Propose an adversarial model for conservative estimation of parameters

e Abstract from the computational assumptions, using a black-box model

Technical challenges/achievements:

e Develop rationale to support a quantified measure of entropy
e Explore the role of adversarial over-sampling and string collisions

e Derive and conjecture new formulas of interest

Distribution of QC-values

The output of a random quantum circuit (RQC) C is probabilistic.
We look at RQCs whose output space is the set \S,, of bit-strings with n = 53 bits.

The distribution of strings sampled from a RQC might look uniform, but it is not.
Fach string s has a probability value (QC-value) {Prob(s <+ C) : s € S, } of being output.

How does the distribution of QC-values relate to the string-sampling distribution?
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Upon quantum string sampling

EXp[XU] — 2/N Var[XU] — 2/N2

Upon uniform string sampling

EXp[XU] — 1/N Var[XU] — 1/N2

A classical computer cannot efficiently find which strings are more likely than others.

A quantum computer can efficiently sample from the true distribution™.

A super-computer can later (effortfully) confirm that “some” quantum sampling occurred.

* with an associated fidelity (probability of correct evaluation).

Toward Certifiable Randomness

The output of a quantum evaluation of a RQC contains inherent fresh randomness.

But a classical computer with enough computation time can simulate a RQC sampling.

Two practical questions:

. Under a claim that a sequence of bit-strings has been sampled by quantum evaluation

of a given RQC, how much entropy can be safely assumed to be contained in it?

. Given a goal of entropy, how many strings should be sampled to enable a verification

with high assurance?
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Information Entropy

Information entropy (there are several flavors) is a quantitative measure of randomness.

E.g., Shannon entropy is the expected negative binary logarithm, —log,, of probabilities.

For n = 53 qubits, a quantumly sampled string has expected entropy h ~ 52.39 bits.

N
h=7) . pilogy(pi) =logy(N)+ (v —1)/log(2) = n—0.60995,
(v~ 0.57722 is the Euler-Mascheroni constant)

On the other hand, a pseudo-randomly computed string has entropy 0.

Fidelity

Fidelity: probability ¢ that a quantum evaluation is correct. For an honest sample with m
strings, the expected number of strings obtained from correct quantum evaluation is m - ¢.
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How Many Strings to Sample?

Problem: What sample size m should a client ask for, from the quantum computer server?’
Depends on the goal (H,e1,€2) of the client and other experimental parameters (¢1,3):

e H: amount of certifiable entropy (<— min number g of strings to obtain quantumly).
e (e1,69): rates (FN, FP), e.g., at most e = 2740 for crypto applications

e ¢1: honest fidelity, e.g., 0.002 (achievable) or 0.01 (foreseen), for n = 53 qubits.

e (3: adversarial sampling budget (8 > m) with fidelity 1

The client then determines the sample size m. Below, ¢2 = q/m, where ¢ is the number of
quantumly obtained strings that the adversary includes in the sample.
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In practice we want to distinguish be-
tween two positive fidelities.

Confusion matrix Classification
Positive Negative
Actual Positive True. Positive False. Negative
condition (Honest operator) ratio (TP) ratio (FN)
Negative False Positive | True Negative
(Malicious operator) ratio (FP) ratio (TN)

accuracy = (TP + TN)/All; precision = TP / (TP + FP); recall = TP / (TP 4+ FN); ...

The Adversary A

Adversarial goal: Produce a sample that minimizes the expected entropy, but condi-
tioned to be accepted by the client with probability > FP.

Adversarial capability:
— Can over-sample the RQC (obtain more strings than needed) with fidelity 1
— Can choose which strings to include (including pseudo-random ones)

— Black-box approach (does not take advantage of the circuit specification C)

Over-sampling allows reducing entropy from quantumly obtained strings:
— Rejection sampling: bias the set of selectable strings

— Observe collisions (repeated strings are likely to have a higher QC-value)

log2(FN=FP), in a Sqgrt scale

Sample size vs. FN=FP, with ¢; = 0.002

Number of strings for SQC distinguishability

For fidelity 0.002, about 50 million strings are needed to reduce the classification
bias to less than 2740, About 2 million strings are needed if the fidelity is 0.01.

Entropy estimation (first approximation): H ~q-(hg—logy(M/q)+logs(q!))

For a better approximation, the reduction term log(M/q) is updated as a sum of terms per
string (as if ¢ =1 done ¢ times). The value ¢ is the minimum allowing the adversary (A) to
satisfy the FP condition. If the pre-sampling budget 3 =0b- N is large enough (> v'N) to
enable string collisions, then A organizes the strings per observed multiplicity ¢. Each bin ¢
has an expected number M, of strings and an expected average QC-value A..
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Example where choosing strings with collisions reduces the final entropy
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